1、求导法:首先求出函数的导数,然后求出导数的零点,即导数为0的点,再判断这些点的函数值,得出最值;
2、边界法:将函数定义域的端点和导数为零的点进行比较,得出最值;
3、二分法:在函数的定义域内取一个点,然后以该点为中心向左右两侧逐步缩小区间,不断比较区间端点恽但炎杰和中点处的函数值,得出最值;
4、极值判定法:对于单峰函数,先求出导数的零点,然后判断函数在导数零点左右两侧的取值情况,得出最值;
5、折线法:将函数曲线分成若干小段,每一小段可以看作一条折线,然后计算折线的端点和拐点处的函数值,得出最值。