1、将方程变形成y的二次方程,二次方程有解,进而求解出函数的定义域。
2、设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域。
3、函数的单调性,求出函数的一阶导数,此时导数表达式中既含有自变量x,也含有因变量y。
4、将变量进行变形,得解析以y表示的一阶导数的表达式,再计算曲线的驻点,根据驻点符号,进一步可判断函数的单调性。
5、计算出函数的二阶导数,由二阶导数为0,计算出函数的拐点,解析拐点的符号,即可判断函数的凸凹性并计算出函数的凸凹区间。
6、如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图像上的任意两点连出的一条线段,这两点之间的函数图像都在该线段的下方,反之在该线段的上方。
7、以函数的定义域以及单调、凸凹性,列举函数上部分点,以y对应求出x坐标,如下图所示。
8、将上述坐标,把五点图进行变化,调整为以x表示为y。
9、根据以上函数的定义域、单调性、凸凹性等性质,并结合函数的单调区间和凸凹区间,函数的示意图如下: