1、函数的定义域,根据函数特征,函数自变量可以取全体实数,即定义域为:(-∞,+∞)。
2、函数的单调性是函数的重要性质,反映了随着自变量的增加函数值的变化趋势,它是研究函数性质的有力工具,在解决比较大小、解决函数图像、值域、最值、不等式问题都有很重要的作用。
3、二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y'=f'(x)仍收墩芬蓥然是x的函数,则y'=f'(x)的导数叫做函数y=f(x)的二阶导数。
4、函数的极限,即求出函数在无穷处的极限。
5、根据函数的奇偶性的判断方法,对于本题由于f(-x)=-f(x),所以函数为奇函数,函数图像关于原点对称,主要判断过程如下图所示:
6、函数图像五点示意图,列图表解析函数上的五点图如下表所示。
7、根据以上函数的定义域、单调性、凸凹性、奇偶性以及极限等相关性质,并在函数的定义域前提下,即可简要画出函数的图像,且该图像关于原点对称。