柯西遍梯臂辐黎曼方程是:柯西-黎曼条件,即柯西-黎曼方程,提供了可微函数在开集中为全纯函数的充要条件的两个偏微分方程,以柯西和黎曼得名。
柯西-黎呆祖截喵曼方程是复变函数在一点可微的必要条件,证明不难。因为可微,所以就列出线性主部表出的一个式子,实部对实部,虚部对虚部,可以求得:
内容:
复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。
复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。