电梯悖论的解释

 时间:2024-10-12 10:28:08

如果你在接近顶层等电朱獾磬心梯,并只注意其中一个电梯门的话,那么将要到的那台电梯可能上楼的概率较高。可是,如果不管那个电梯间的电梯拎枋辏话都可以上,则将要到达的那台电梯上、下楼的概率就不问了。这个概率在电梯数目接近无限时就接近于1/2。停在接近底层的电梯可能下楼的概率也是同样的。

自然,我们假定电梯的运行彼此无关,它们的速度相等,且在每层楼的平均等待时间相等。如果电梯只有少数几台,则概率稍有偏离。但如果有20台,则对所有各层来讲,上、下楼的概率就非常接近1/2了,自然最顶层和最底层除外。

电梯悖论的解释

拓展资料:

其他有趣的悖论:

1. 理发师悖论(罗素悖论):某村只有一人理发,且该村的人都需要理发,理发师规定,给且只给村中不自己理发的人理发。试问:理发师给不给自己理发?

如果理发师给自己理发,则违背了自己的约定;如果理发师不给自己理发,那么按照他的规定,又应该给自己理发。这样,理发师陷入了两难的境地。

2.芝诺悖论——阿基里斯与乌龟:公元前5世纪,芝诺用他的无穷、连续以及部分和的知识,引发出以下著名的悖论:他提出让阿基里斯与乌龟之间举行一场赛跑,并让乌龟在阿基里斯前头1000米开始。

假定阿基里斯能够跑得比乌龟快10倍。比赛开始,当阿基里斯跑了1000米时,乌龟仍前于他100米;当阿基里斯跑了下一个100米时,乌龟依然前于他10米……所以,阿基里斯永远追不上乌龟。

3. 说谎者悖论:公元前6世纪,古希腊克里特岛的哲学家伊壁门尼德斯有如此断言:“所有克里特人所说的每一句话都是谎话。”

如果这句话是真的,那么也就是说,克里特人伊壁门尼德斯说了一句真话,但是却与他的真话——所有克里特人所说的每一句话都是谎话——相悖。

如果这句话不是真的,也就是说克里特人伊壁门尼德斯说了一句谎话,则真话应是:所有克里特人所说的每一句话都是真话,两者又相悖。所以怎样也难以自圆其说,这就是著名的说谎者悖论。

  • 苏修和苏联国旗区别是什么
  • 十字相乘法教程
  • 世界八大神话体系是什么
  • 电解食盐水的化学方程式是什么
  • 实验室制取氯气的方法以及对应化学方程式
  • 热门搜索
    手抄报教师节 读一本好书手抄报 生态文明手抄报 教师节手抄报内容文字 电子手抄报怎么做 少年中国说手抄报 端午手抄报图片 崇尚英雄精忠报国手抄报 文学手抄报内容 三爱三节手抄报资料