1、因为函数含有二次根式和分式,所以x为正数,进而求出定义域。
2、如果函数y=f(x)在区间D内可导(可微),若x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。
3、函数的凸凹性,计算函数的二阶导数,解析函数的凸凹性,并计算凸凹区间。
4、二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y'=f'(x)仍收墩芬蓥然是x的函数,则y'=f'(x)的导数叫作函数y=f(x)的二阶导数。
5、函数的端点处的极限。
6、函数五点图表,即函数部分点解析表如下。
7、综合以上函数的定义域、单调性、凸凹性性、奇偶性和极限等性质,并结合函数的单调区间、凸凹区间,可画出函数的示意图。