曼哈霪肢嘤苑顿计量法也就是曼哈顿距离,曼哈顿距离——两点在南北方向上的距离加上在东西方向上的距离。对于一个具有正南正北、正东正西方向规则布局的城镇街道,从一点到达另一点的距离正是在南北方向上旅行的距离加上在东西方向上旅行的距离,曼哈顿距离不是距离不变量,当坐标轴变动时,点间的距离就会不同。
在西洋棋里,车(城堡)是以曼哈顿距离来计算棋盘格上的距离;而王(国王)与后(皇后)使用切比雪夫距离,象(主教)则是用转了45度的曼哈顿距离来算(在同色的格子上),也就是说它以斜线为行走路径。只有国王需要一步一步走的方式移动,皇后、主教与城堡可以在一或两次移动走到任何一格(在没有阻碍物的情况下,且主教忽略它不能走到的另一类颜色)。
曼哈顿与欧几里德距离: 红、蓝与黄线分别表示所有曼哈顿距离都拥有一样长度(12),而绿线表示欧几里德距离有6×√2 ≈ 8.48的长度。
曼哈顿距离——两点在南北方向上的距离加上在东西方向上的距离,即d(i,j)=|xi-xj|+|yi-yj|。对于一个具有正南正北、正东正西方向规则布局的城镇街道,从一点到达另一点的距离正是在南北方向上旅行的距离加上在东西方向上旅行的距离因此曼哈顿距离又称为出租车距离,曼哈顿距离不是距离不变量,当坐标轴变动时,点间的距离就会不同。