可逆艏婊锬曛矩阵的平方是本身,应该是单位矩阵,或者只存在行列交换而不存在行列加减的初等单位矩阵。
A^2租涫疼迟=A,即是A^2-A=0,即A(A-E)=0,所以R(A)+(A-E)小于或等于n。又因为A+(E-A)=E,所以R(A)+(A-E)=R(A)+R(E-A)大于或等于n,于是R(A)+(A-E)=n。
由A(A-E)=0可知A-E的每一列都是Ax=0的解,类似地可以知道,A的每一列也都是(A-E)x=0的解,A的特征值只能是1或0。
定理
(1)逆矩阵的唯一性。
若矩阵A是可逆的,则A的逆矩阵是唯一的,并记作A的逆矩阵为A-1。
(2)n阶方阵A可逆的充分必要条件是r(A)=m。
对n阶方阵A,若r(A)=n,则称A为满秩矩阵或非奇异矩阵。
(3)任何一个满秩矩阵都能通过有限次初等行变换化为单位矩阵。
推论 满秩矩阵A的逆矩阵A可以表示成有限个初等矩阵的乘积。