在使用最小二乘法得出参数值后,仍然要进行显著性t检验是因为检查合理性,如果不显著性影响,算出参数值接近零是正确的。
F检验用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计母体。t检验推论差异发生的概率,从而比较两个平均数的差异是否显著。F检验对于数据的正态性非常敏感,因此在检验方差齐性的时候,Levene检验。
Bartlett检验或者Brown–Forsythe检验的稳健性都要优于F检验。
F检验还可以用于三组或者多组之间的均值比较,但是如果被检验的数据无法满足均是正态分布的条件时,该数据的稳健型会大打折扣,特别是当显著性水平比较低时。但是,如果数据符合正态分布,而且alpha值至少为0.05,该检验的稳健型还是相当可靠的。