∫1/(1+x^2+垓矗梅吒x^4)dx
=(1/2)∫(1-x²+1+x²)/(1+x^2+x^4)dx
=(1/2)∫(1-x²)/(1+x^2+x^4)dx+(1/2)∫(1+x²)/(1+x^2+x^4)dx
分子分母同除以x²
=(1/2)∫(1/x²-1)/(1/x²+1+x²)dx+(1/2)∫(1/x²+1)/(1/x²+1+x²)dx
将分子放到微分之后
=-(1/2)∫1/(1/x²+1+x²)d(x+1/x)+(1/2)∫1/(1/x²+1+x²)d(x-1/x)
分母配方
=-(1/2)∫ 1/[(x+1/x)²-1]d(x+1/x)+(1/2)∫1/[(x-1/x)²+3]d(x-1/x)
两项均可套公式直接积出了
=-(1/4)ln|(x+1/x-1)/(x+1/x+1)|+(1/(2√3))arctan[(x-1/x)/√3]+C
扩展资料:
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
9、∫ tanx dx = - ln|cosx| + C = ln|secx| + C
10、∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C